

① (i) Since $B_G = \{d_{\pi} \Phi_{v_i, v_j, \pi} : \pi \in \text{Irr}(G), v_i, v_j \in B_{\pi}\}$ is an ONB for $\mathcal{F}(G, \mathbb{C})$, we have that

$$\forall f \in \mathcal{F}(G, \mathbb{C}), \quad f = \sum_{\pi \in \text{Irr}(G)} \sum_{1 \leq i, j \leq d_{\pi}} d_{\pi} \langle f, \Phi_{\pi, v_i, v_j} \rangle \Phi_{\pi, v_i, v_j}$$

~~⊗~~

and $\sum_{g \in G} |f(g)|^2 = |G| \langle f, f \rangle$

$$= |G| \sum_{\pi \in \text{Irr}(G)} d_{\pi} \sum_{i, j \leq d_{\pi}} |\langle f, \Phi_{\pi, v_i, v_j} \rangle|^2 \quad \begin{matrix} (\text{by expanding}) \\ \langle f, f \rangle \end{matrix}$$

$$= |G| \sum_{\pi} d_{\pi} \sum_{i, j \leq d_{\pi}} \left| \frac{1}{|G|} \sum_{g \in G} f(g) \Phi_{\pi, v_i, v_j}(g) \right|^2$$

(by def of inner product $\langle f, \Phi_{\pi, v_i, v_j} \rangle$)

$$= \frac{1}{|G|} \sum_{\pi} d_{\pi} \sum_{i, j \leq d_{\pi}} \left| \sum_{g \in G} f(g) \langle \pi(g) v_i, v_j \rangle \right|^2$$

(by def of matrix coeff $\langle \pi(g) v_i, v_j \rangle$)

$$= \frac{1}{|G|} \sum_{\pi} d_{\pi} \sum_{i, j \leq d_{\pi}} |\langle \pi(f) v_i, v_j \rangle|^2 \quad \begin{matrix} (\text{by def of } \pi(f)) \end{matrix}$$

$$= \frac{1}{|G|} \sum_{\pi} d_{\pi} \sum_{i \leq d_{\pi}} \|\pi(f) v_i\|^2$$

(Since $\{v_1, \dots, v_{d_{\pi}}\}$ is ONB for V_{π})

$$= \frac{1}{|G|} \sum_{\pi} d_{\pi} \|\pi(f)\|_{HS}^2$$

(By def of HS norm).

$$\begin{aligned}
 \text{(iii) From (i)}: f(g) &= \sum_{\pi} \sum_{i,j \in d_{\pi}} d_{\pi} \langle f, \hat{f}_{v_i, v_j, \pi} \rangle \langle \pi(g) v_i, v_j \rangle \\
 &= \sum_{\pi} \sum_{i,j \in d_{\pi}} d_{\pi} \langle \pi(g) v_i, v_j \rangle \sum_{g' \in G} \frac{1}{|G|} f(g') \langle \pi(g') v_i, v_j \rangle \\
 &= \frac{1}{|G|} \sum_{\pi} d_{\pi} \sum_{i,j} \langle \pi(g) v_i, v_j \rangle \langle \pi(f) v_i, v_j \rangle \\
 &= \frac{1}{|G|} \sum_{\pi} d_{\pi} \langle \pi(f), \pi(g) \rangle_{HS}.
 \end{aligned}$$

(iv) Note that

$$\begin{aligned}
 \pi(f_1 * f_2)(v) &= \sum_{g \in G} (f_1 * f_2)(g) \pi(g) v \\
 &= \sum_{g \in G} \left(\sum_{g_1 g_2 = g} f_1(g_1) f_2(g_2) \right) \pi(g_1, g_2) v \\
 &= \sum_{g_1, g_2 \in G} f_1(g_1) f_2(g_2) \pi(g_1, g_2)(v) \\
 &= \sum_{g_1, g_2} f_1(g_1) f_2(g_2) \pi(g_1) (\pi(g_2)(v))
 \end{aligned}$$

$$\begin{aligned}
&= \sum_{g_1 \in G} f_1(g_1) \pi(g_1) \left(\sum_{g_2 \in G} f_2(g_2) \pi(g_2(v)) \right) \\
&= \pi(f_2) \circ \pi(f_1)(v).
\end{aligned}$$

$$\begin{aligned}
\text{Then } \|\pi(f_1 * f_2)\|_{HS} &= \|\pi(f_2) \circ \pi(f_1)\| \\
&\leq \|\pi(f_1)\|_{HS} \|\pi(f_2)\|_{HS},
\end{aligned}$$

where the inequality follows from standard linear algebra (norm of composition of operators acting on Hilbert spaces),

$$\textcircled{2} \text{ a) let } x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{F}_p) \setminus B.$$

Hence $c \neq 0$.

$$\begin{aligned}
\text{Suppose } uxvx^{-1}x &= u'xv'x^{-1}x, \\
\text{for some } u, v, u', v' &\in N^*.
\end{aligned}$$

$$\Rightarrow (u^{-1}u) x v x^{-1} (v v^{-1}) = x v' x^{-1}.$$

$$\begin{aligned}
\text{Note that } x \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} x^{-1} &= \begin{pmatrix} ad - ct - c & -ab + a^2t + a \\ -ct & -bc + act + a \end{pmatrix}
\end{aligned}$$

$$\text{Write } u^{-1}u = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}, \quad v v^{-1} = \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix},$$

$$V = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \quad V' = \begin{pmatrix} 1 & t' \\ 0 & 1 \end{pmatrix}$$

$$\text{Then we have } \begin{pmatrix} \text{ad-cat} - c - \alpha ct^2 & * \\ -ct^2 & -bct + a - \beta ct^2 \end{pmatrix} \begin{pmatrix} \text{ad-cat}' - c & * \\ -ct'^2 & -bct' + a \end{pmatrix}$$

$$\text{Hence } (t')^2 = t^2$$

$$\text{cat} + \alpha ct^2 = \text{cat}'$$

$$\text{cat} - \beta ct^2 = \text{cat}'$$

$$\text{It follows } t = t', \quad \alpha = \beta = 0.$$

ii) Suppose $A \neq B$, so there exists $x \in A \setminus B$.

Consider the map $(N^* \cap A)^3 \rightarrow SL_2(\mathbb{F}_p)$

$$(u, v, w) \mapsto uxv w^{-1} w.$$

This map is injective, and the image is contained in $A^{(5)}$. (Since $x^{-1} \in A$ from symmetry of A).

$$\text{Hence } (N^* \cap A)^3 \subseteq |A^{(5)}|.$$

(iii) Note that the map $N^* \times N^* \rightarrow SL_2(\mathbb{F}_p)$
 $(u, v \in SL_2(\mathbb{F}_p) \setminus B) \quad (u, v) \mapsto uxv w^{-1}$

is injective (similar to part (i)).

But if $A = N \cup \{x, x^{-2}\}$, image is contained in $A^{(3)} x^{-2}$

$$|A| = p+2.$$

$$\text{This shows } (p-2)^2 = (|A| - 3)^2 \leq |A^{(3)}|.$$

$$\text{So } |A^{(3)}| \geq C |A|^2, \text{ for some suitable } C.$$

③

(i) Follows easily since $x^2 \in K$ and K is a subgroup.

(ii) Let $H = x^{-2} K x \cap K$, which is a subgroup of K . From basic group theory, $|K x K| = [K : H] |K| = C x$.

(since $K x K$ is the disjoint union of $K x y$, where y runs over cosets of H in K).

Conclusion follows.

(iii) Note that $x^2 = -I$, and since $p \equiv 1 \pmod{4}$, then -1 is a square modulo p .

First note $|K| = \frac{p(p-1)}{2}$.

$$\text{Note that } \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -a+b+2d & -2a+b+2d \\ a-b-d & 2a-b-d \end{pmatrix}$$

If this belongs to K , then $a-b-d=0$.

$$\text{In this case, } \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} d-a+d \\ 0 & a \end{pmatrix}$$

If a is square mod p , and $ad=1$, then also d is square mod p .

Hence $|K \cap x^2 \backslash x| = p-1$.

(iii) From previous two points,

$$|A^{(3)}| \leq (2+p) \frac{p(p-1)}{2} \leq p \frac{(p^2-1)}{2} = |SL_2(\mathbb{F}_p)|$$

$$\text{Also } |A| = \frac{p(p-1)}{2} + 2, \text{ so } |A^{(3)}| \leq C |A|^{3/2}.$$

④ We prove Theorem 6.1 assuming Theorems 6.2 & 6.3.

Let A a generating for $SL_2(\mathbb{F}_p)$ such that $|A^{(3)}| \leq |A|^{1+\delta}$ (for some δ sufficiently small).

Assume wlog $A = A \cup A^{-1} \cup \{e\}$

(consider $B = A \cup A^{-1} \cup \{e\}$ otherwise).

(Note that $|A^{(3)}| \leq |A|^{1+\delta}$ can be rewritten as
 $d(A^{(2)}, A^{-1}) = \log \left(\frac{|A^{(3)}|}{|A^{(2)}|/|A|} \right) \leq \delta \log A$.

Using Ruzsa Δ -ineq, one can show for example
 $d(A^{(2)}, A) \leq d(A^{(1)}, A^{-1}) + d(A^{-1}, A) \leq 2\delta \log A$,
which implies $|A^{(2)} \cdot A^{-1}| \leq |A|^{2\delta}$.

We have $B^{(3)} = \bigcup_{\varepsilon_1, \varepsilon_2, \varepsilon_3 \in \{0, \pm 1\}} A^{\varepsilon_1} A^{\varepsilon_2} A^{\varepsilon_3}$, where $A^0 := \{1\}$.

Can bound each of them, also using

$$|A| \leq |A^{(2)}| \leq |A^{(1)}| \leq |A|^{1+\delta}$$

$$\text{So one has } |B| \leq 8 |A|^{1+2\delta} \leq 8 |B|^{1+2\delta},$$

(LOG assumption is OK).

Since $|A^{(3)}| \leq A^{1+\delta}$, using Theorem 3.5 from notes,
it follows that $A^{(3)}$ is a K -approx subgroup,
with $K \leq 2|A|^{5\delta}$.

But now, from 6.2, we know that either

$$|A^{(3)}| \leq (2|A|^{5\delta})^C$$

or $|A^{(3)}| \geq |SL_2(\mathbb{Z}/p)| / (2|A|^{5\delta})^C$, for some absolute C .

In the first case, size $|A| \leq |A^{(2)}| \leq 2^c |A|^{5c}$,

this can only hold for $|A|$ of some finite size, and then can choose δ accordingly.

In the second case, by Theorem 6.3, it follows that $A^{(3)} = \mathrm{SL}_2(\mathbb{F}_p)$. \square .

⑤ Proof is very similar to 6.9. Consider instead $N_A = \cap \cap A$ and the map

$$N_A \times N_A \times N_A \longrightarrow A$$
$$(u, v, w) \mapsto uxv x^{-1} w,$$

for some $g \in A \setminus B$.

As in Exercise ②, this map will be (almost) injective.